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The Synthesis Process

[ (source)
Source Data
[ (new)
Apply Model | 1 | 1 | | 1
. COU1A AGECAT AGELE70 WHITE MALE  BMI
Synthetic D
ynt ¢ Data United States 2 1 1 1 33.75155
Ad.dJIJD.D.a.LQLaLI.'f_IQ_atlonS United States 2 1 1 0 39.24707
The source datasets can be as small as 100 or 150 B”fteg 2:3:95 : i i ‘1) 4(2)55-3232
patients. We have developed generative modeling L ed ates _
techniques that will work for small datasets. U”fted States 5 0 0 1 24.42046
- The source datasets can be very large — then it SONEE0 MaeS 5 0 1 0 19.07124
becomes a function of compute capacity that is United States E 1 1 1 26.04938
available United States 4 1 1 1 25.46939

» |t is not necessary to know how the synthetic data will
be analyzed to build the generative models. The
generative models capture many of the patterns in the
source data
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A simulator exchange allows data to be made
available without sharing actual data

f (new)
: —/// ?
A —50; Data Consumers
Apply Model
Synthetic Data
f (new)
: —/// ?
/ h&
Apply Model
Synthetic Data
Additional Clarifications
{(new) « The simulators would not be given to the data
// Py consumers — they would only have access to them

through an interface.
/ % « This access would be monitored and throttled to
= reduce the risk of attacks on the models.
« Data consumers would also need to agree to terms of

Synthetic Data use around the access to the simulators.

Apply Model
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Training a generative model often uses a
discriminator

S

Real Data

‘ E) Synthetic Data 'Slg
Generator Discriminator

Evaluation Results
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The synthesis of longitudinal data
requires a different approach

. Features & Cohorts:
- Define features on the raw longitudinal data and then synthesize the

tabular feature dataset
- Define a cohort on the raw longitudinal data and then synthesize the

tabular cohort dataset

- Raw Longitudinal;
- Fully vs partially synthetic data

- For RWD we use a hybrid approach of sequential synthesis and

recurrent neural network architectures to synthesize these — full

synthesis
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Two synthesis strategies for raw
longitudinal data

variables

Full Synthesis Partial Synthesis
Synthesize all Synthesize

variapbles quasi-identifiers
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Privacy-Utility Trade-off

max
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ldentity Disclosure Model

{male, 50}

1 population to synthetic sample

P

synthetic sample to
population

R

{male, 50} {Imale, 50}
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Evaluations of (re-)identification risks show that it
IS low In multiple studies across multiple datasets

Fully Synthetic Data Original Data

Washington Hospital 0.0197 0.098
Data (Discharge)

Canadian COVID-19 0.0086 0.034
Data (Public Health)

A commonly used risk threshold = 0.09
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Membership disclosure: is the distance between S

and D predictive of which records are in the training
dataset

synthesis
process

training | »| Synthetic

dataset dataset (S)
N
s distance
original
dataset | v

Z > adversary
dataset (D)

holdout
dataset
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Comparing real and synthetic data: Adjusted
model of impact of bowel obstruction on DFS

Hazard Ratios: Analysis for Disease-Free Survival

Source + Real Synthetic Cl Overlap

T Stage: T4 vs T1-2

T Stage: T3 vs T1-2 —— —— 42%
Sex: Male vs Female -:-.- 7%
Positive LNs (>=4) - — 81%
Obstruction : —— 86%
Histology (High) :-.— 90%
ECOG: 1-2vs 0 -:.- 89%
BMI: 25-30 vs <25 -:.— 89%
BMI: >30 vs <25 : — 91%
Age: 40-69 vs <40 -.-: 99%
Age: >=/7/0vs <40 -.—i 88%

0 2 4 6 8

Hazard Ratio
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Longitudinal Data Model

Demographics|
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Drugs

Visits

Admissions

Labs

Claims

Demographics Lab
Age Test name
Sex Test result (integer)

1

Time to last day of follow-up available

Comorbidity score (elixhauser)

Dispensed amount quantity
Relative dispensed time in days
Dispensed day supply quantity

Morphine use (binary)

Oxycodone use (binary)

Antidepressant use (binary)

Visits (ED)
Relative admission time in days

Problem code 1

Problem code 2

Resource intensity weights

Admissions (Hospital)
Relative time admitted in days
LOS

Diagnosis code 1

Diagnosis code 2

Resource intensity weight

Relative time in days lab taken

Primary diagnosis code

Provide specialty

Relative service event start date
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Adjusted Cox Regression

Note: Adjusted estimates include the
following co-variates: age, sex,
antidepressant use, Elixhauser score,
ALT, eGFR, HCT; Opioid 1 served as
the reference group
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Real -

Synthetic 4

Composite
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e
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e
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Hospitalization

e

Real -

Synthetic H

Death

Real -

Synthetic -

Pneumonia

- i

0.25 0.50 0.75 1.00 1.25
Adjusted Risk Ratio (95% Confidence Interval)

R

Replica
Analytics



One way to classify utility

metrics Is as broad and narrow

broad metrics

These are generic metrics that are
easy to calculate when the
generative model is built and
synthetic data are synthesized.
They are only useful if they are

predictive of workload-specific
metrics.
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>-narrow metrics

These are workload-specitic and
are what is of most interest to the
data users. However, all the
possible workloads will not be
known Iin advance and therefore
we have to consider
representative workloads when
developing and evaluating utility
metrics.
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Examples of Broad Metrics

. Comparison of the number of events per patient

Number of certain types of events (e.g., prescriptions) per patient

Limit the above to a certain time interval

- Comparison of the overall frequency of events

. Comparisons of event distributions across classes of

events using univariate distribution comparison metrics

- Evaluation of the k-order transition matrices among events

or classes of events

Replica
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Synthetic Data
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Hierarchical datasets require a
different approach

” N
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: : Reaction
Iherapy ¥ primaryid
[ 9 bntMd caseid
caseid pt
dsg. drug seq drug_re¢_act
start_dt
end_at :
dur Demographic Outcome
o ng ¥ primaryid | p— ¥ primaryid — | ¥ primaryid
caseld ' caseld caseld
drug_seq caseversion outc_cod
Indication role_cod i_f_code
¥ primaryid drugname svent ot
caseid prod_ai mfr_dt "
indi_drug_seq val_vom init_fda_dt chortf;owcc:-
indi_pt route fda_dt v Primayic
dose_vbm rept_cod cGaseid
cum_dose_chr auth_num rpsr_cod
cum_dose_unit mfr_num
dechal mfr_sndr
rechal lit_ref
lot_num age
exp dt age _cod
nda_num age_qgrp
dose_amt sex
dose_unit e_sub
dose_form wt
dose_freq wt_cod
rept_dt
to_mir
occp_cod
reporter_country
occr_country
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Practical
Synthetic Data
Generation

Balancing Privacy and the Broad
Availability of Data

Khaled El Emam,
Lucy Mosquera &
Richard Hoptroff

Introductory Book on Data Synthesis
Published in 2020
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Use Case: Analyzing
Longitudinal Hospital Discharge
Data
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Roles

Claire (Researcher)

Claire is a researcher who

IS Interested in assessing

high-cost hospitalizations
with lengths of stay
greater than 5 days.

Claire puts in a request for
access to data to the data
provider

(c) Copyright 2019-2021 Replica Analytics Ltd.

Alice

Alice represents the data
provider and is authorized
to access personal health
iInformation. She has a
computing background
and works in the IT
department supporting the
data scientists and
researchers.

She receives data
requests from users for
research purposeg

R
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Use Case

Alice can provide synthetic data for Clare for research

PUrpoOSes as:

1) A specified cohort of key features

2) Raw longitudinal data

We will illustrate both these use cases

R
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Case 1: Synthesis of a Cohort

) ¥ Data request with

analytic cohort e |

\ — definition: —

d - Hospitalizations with
LOS >5

1 - Highest cost stay per l

//‘ Build analytic cohort
—> from raw data

person

(”’—"

—F \—

Synthesize the data

Conduct analysis

\ Send synthetic data

to the data user
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Case 2: Synthesis of Raw
Longitudinal Data

Data request !

Conduct analysis

(c) Copyright 2019-2021 Replica Analytics Ltd.

Build analytic cohort:
- Hospitalizations with

D LOS >5

- Highest cost stay per
person

L

Synthesize the entire
longitudinal dataset

Send synthetic data
to the data user
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To Learn More

. Join our mailing list: https://bit.ly/3gRVAI
- Follow us on Linkedin: https://bit.ly/2XS3KHF

. Listen to our comprehensive on-line tutorials on data

synthesis: https://bit.ly/2TXI0Jy
- Read our introductory report and book on the topic

OREILLY" W\

Accelerqtlng .
Alwith % @
Synthetlc Data |

Practical ® =
SynthetIC Data
Generdtlon
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Richard Hoptroff

REPORT
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