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 Introduction to synthetic data and its use cases
- Statistical inference and synthetic data
 Synthetic data for reproducing findings

« Synthetic data for population inference
 Privacy of synthetic data
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What is Synthetic Data ?
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Additional Clarifications

. The source datasets can be as small as 150 patients or so. We have developed
generative modeling techniques that will work reasonably well for small
datasets. But this also depends on the number of variables in the dataset

. The source datasets can be very large — then it becomes a function of
compute capacity that is available.
. It is not necessary to know how the synthetic data will be analyzed to build

the generative models. The generative models capture many of the patterns
in the source data.
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How generative models work
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Sequential synthesis generative models

Khaled El Emam, Lucy Mosquera, Chaoyi Zheng, Optimizing the synthesis of
clinical trial data using sequential trees, Journal of the American Medical
Informatics Association, Volume 28, Issue 1, January 2021, Pages 3—

13, https://doi.org/10.1093/jamia/ocaa249
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Insight improvement
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Transparency, data
protection, regulations

Control group synthesis

Anonymization via synthesis

Simulated data asset creation

Cross-border synthesis

Powered hypothesis testing

Streamline data projects

Enable Al
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Operating models for secondary analysis using
synthetic data

1. Data custodians share the synthetic data and conclusions are drawn from the analysis of
synthetic datasets

2. Data custodians make synthetic data available for exploratory analysis and if there are
interesting results, data users make a request for the full dataset (which may be a long and
complicated process, but at least there is confidence that there are interesting results

before initiating that process)

3. Perform the analysis on the synthetic data and then submit the analysis code (R, SAS,
Python, ...) to be executed on the real dataset behind a firewall - the external analysts never
work with the real data
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Can synthetic data be a
proxy for real data ?
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Assessing synthetic data

Generic utility Workload aware
utility

Show how similar synthetic lllustrate how well synthetic

data is to the real data it data can be used as a drop-

was generated from without inreplacement or proxy for

referencing a specific analysis real data for a specific
analysis

JMIR MEDICAL INFORMATICS El Emam et al

Original Paper

Utility Metrics for Evaluating Synthetic Health Data Generation
Methods: Validation Study

Khaled El Emam'*?, BEng, PhD; Lucy Mosquera™, BA, MSc; Xi Fang’, BA, MSc; Alaa El-Hussuna®, MSe, MD

'school of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada

2Children's Hospital of Eastern Omtario Research Institute, Ottawa, ON, Canada
Rchhca Analytics Ltd, Ottawa, ON, Canada
4(}(&1‘\ Source Research Collaboration, Aarlberg, Denmark

Today we will focus on using synthetic data as a proxy for real data in statistical

analysis which is a kind of workload aware assessment.

11 © Copyright 2019-2022 Replica Analytics Ltd.

Replica
Analytics

AN AETION COMPANY



Statistical inference
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The goal of statistical inference is to use observable sample statistics e, to infer
unobservable population values e,
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Statistical inference

Population Sample
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Random sampling introduces variability, each sample will produce a slightly
different effect size, e, # €4,

With appropriate study design, each sample statistic should be representative Reolica
of the true population effect size e, @Anﬂlyﬁcs
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Statistical inference and synthetic data

Population Sample
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Statistical inference and synthetic data

Population Sample
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Synthetic data may be generated from
a real sample and used to calculate an
effect size esq
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Statistical inference and synthetic data

There are two perspectives on analysis using synthetic data:
1. Reproducing real results: aims to see eg;, = e,

2. Making inferences about the underlying population: e, = e,

One of the enduring questions is whether synthetic datasets are a good proxy for
real data for analysis purposes, while simultaneously addressing privacy concerns

Our presentation today will cover both perspectives to address:
« Whether valid inferences can be made from synthetic data

« Understand the parameters behind such valid inferences
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Because synthesis introduced additional variation,
this needs to be accounted for in models to get valid
estimates

This means that it is necessary to take a multiple imputation approach to account for this
additional variability
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Different types of analyses for synthetic data

- There are four different approaches to evaluating the analysis results from synthetic data

No Multiple Imputation With Multiple Imputation

Reproducibility e e
Inferences e e
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Case study on reproducibility
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Can synthetic data reproduce real data analysis
results?
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Contents lists available at ScienceDirect Contraception

Contraception

journal homepage: www.elsevier.com/locate/contraception

Prescription opioid fills following surgical abortion™

Liza R. Gibbs?, Julia A. Pisc? Kari P. Braaten®<, Brian T. Bateman ¢, Elizabeth M. Garry**

aScience, Aetion, Inc. Boston, MA United States
b Department of Obstetrics and Gynecology, Brigham and Women'’s Hospital; Boston, MA United States
¢ Planned Parenthood League of Massachusetts; Boston, MA United States

d Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School;
Boston, MA United States

¢ Obstetric Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women'’s Hospital and Harvard Medical School; Boston,
MA United States

Analysis using commercial insurance data to assess rate and predictors
of opioid prescription fills following surgical abortion

Utilized data from 28,252 individuals with recorded surgical abortions

21 © Copyright 2019-2022 Replica Analytics Ltd.

Replica
Analytics

AN AETION COMPANY



Methods

« Synthesized m =10 copies of the real dataset using sequential synthesis

« Produced univariate and multivariate logistic regression models using a single synthetic data
(unadjusted) or all m=10 datasets (adjusted)

3 metrics to assess how well synthetic data reproduces the findings of the real data:
- Decision agreement (are the same conclusions drawn from the synthetic data?)
- Estimate agreement (does the estimate from the synthetic data fall within the real data CI?)

- Confidence interval overlap (extent of overlap of the Cl between real and synthetic data)
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Univariate Logistic Regression

Analysis - real - unadjusted —- adjusted

o [ ]
Decision Estimate (¢]]
n Iva r I a e es u s agreement agreement  Overlap
(adjusted) (adjusted) (adjusted)
Region: South (Northeast referent) ‘:3—_FI*_._| yes no 017
Region: Midwest / North Central (Northeast referent) PJ:%_'_._< yes o 0.23
Region: West (Northeast referent) lbﬂ"_,_¢ yes no 0.22
Moderate sedation on day of abortion t§.| yes yes 0.6
Depression or antidepressants in baseline qu yes yes 0.76
Misoprostol on or within 7d prior to abortion HEF yes yes 0.77
H H Non-opioid substance abuse/dependence in baseline EE yes yes 0.86
. e . yes yes 0.6
Anxiety or anxiolytics in baseline lﬁ{"

Decision 0.78 0.83 D&E (D&C referent) gl yes yes 0.98
. A . yes no 0.46

a g reeme nt Smoking-related claim in baseline Q{Eﬁ"
Provider type: Other or unknown (OBGYN referent) E—‘ yes yes 0.7
EStI mate O' 74 O' 65 Provider type: Family medicine (OBGYN referent) I‘H yes yes 0.94
d g reeme nt Year of abortion: 2015 (2014 as referent) H yes yes 0.82
Year of abortion: 2016 (2014 as referent) H{ yes yes 0.84
Average CI 0.63 0.65 yes yes 0.73

Year of abortion: 2017 (2014 as referent)

ove rla P Year of abortion: 2018 (2014 as referent) yes yes 0.88
Age: 45-50 (20-24 referent) yes yes 0.9

Age: 40-44 (20-24 referent) no no 055

Age: 35-39 (20-24 referent) no no 0.24

Age: 30-34 (20-24 referent) no no 0.27

Age: 25-29 (20-24 referent) no no 032

Age: 15-19 (20-24 referent) ves yes 0.81

Anesthesia for abortion on day of abortion ﬂ yes yes 0.95
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Multivariate Logistic Regression

Analysis - real - unadjusted —- adjusted

M I t I I t I t Decision  Estimate Cl
Uitivariate resuits athied) (o) (adused

Region: South (Northeast referent) '_°_—-—‘L._¢ yes ne 017

Region: Midwest / North Central (Northeast referent) »*:-’:F_._| yes o 023

Region: West (Northeast referent) 'J"_:'T'—-—i yes no 0.22

Moderate sedation on day of abortion yes yes 0.6

. . . . es es 0.76
Depression or antidepressants in baseline Y y

e
s
Misoprostol on or within 7d prior to abortion yes yes 0.r7
_ U na dj u Sted Adj u StEd Non-opioid substance abuse/dependence in baseline yes yes 0.86
yes yes 0.6
g

Anxiety or anxiolytics in baseline

DGCISIOI’] 0.69 0.9 1 D&E (D&C referent) yes yes 0.98
a g reement Smoking-related claim in baseline EEE]" yes no 0.46
. Provider type: Other or unknown (OBGYN referent) Eﬁ yes yes 0.97
EStI mate O' 69 0'83 Provider type: Family medicine (OBGYN referent) l+£ yes yes 0.94
agreeme nt Year of abortion: 2015 (2014 as referent) = yes yes 082
Year of abortion: 2016 (2014 as referent) st yes yes 0.84

Average CI  0.62 0.67 yes  yes 073

Year of abortion: 2017 (2014 as referent)

ove rla P Year of abortion: 2018 (2014 as referent) yes yes 0.88
Age: 45-50 (20-24 referent) yes yes 0.9

Age: 40-44 (20-24 referent) no no 055

Age: 35-39 (20-24 referent) no no 0.24

Age: 30-34 (20-24 referent) no no 0.27

Age: 25-29 (20-24 referent) no no 032

Age: 15-19 (20-24 referent) ves yes 0.81

Anesthesia for abortion on day of abortion yes yes 0.95
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Conclusions about reproducibility

- The level of agreement and Cl overlap to be expected, on average, should be quite high

 Utilizing a multiple imputation approach (rather than single imputation) generally gives
better reproducibility results

« These results have also been validated using simulations
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Drawing inferences from synthetic data
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Evaluating the validity of population inferences

« A common way to evaluate the validity of population inferences (through simulations) is to
consider:

« Bias (we want it as close to zero as possible)
« Coverage (we want it to be close to 95%)

« Precision (we evaluate this using the empirical standard error, which we want to be
small)

« Power (we want this to be as close to 80% as possible)
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Simulation of population inference

- We performed a simulation on four different datasets to evaluate how well synthetic data
can be used to make population inferences

Dataset Description n

NO147 Colon cancer clinical trial; examine the relationship between 1,543
bowel obstruction and overall survival

CCHS Canadian Community Health Survey; impact of sex on 63,522
cardiovascular health

Danish Danish colon cancer surgery registry; examine the relationship 12,855

surgery between age and medical complications from surgery

COVID-19 Testing data for COVID-19 testing; impact of sex 4,150

Data

Replica
Analytics
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Bias results
(sequential synthesis w/ NO147 trial)
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Bias eliminated coverage
(sequential synthesis w/ NO147 trial)
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Empirical SE

(sequential synthesis w/ NO147 trial)
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Power
(sequential synthesis w/ NO147 trial)

0.9

0.8

Power
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Conclusions about inferences

« Using a multiple imputation approach can result in valid inferences from synthetic datasets
for sequential synthesis generative models

« An appropriate parameter is m=10
- Data amplification in this context only provides a marginal benefit

 Inferences without multiple imputation can often have low validity
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What have we learned ?
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What have we learned ?

Both approaches

(reproducibility and inferences)

to analyses using synthetic data

are reasonable Reproducibility

The results are not uniform
across generative models - it is
important to evaluate the
validity of inferences for
different types of generative
models

Inferences
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Limitations

« We performed the simulations on four datasets which represent a limited set of possible
effect sizes, causal relationships, and degrees of confounding

« These results may not apply exactly to machine learning problems where the benefits of
data amplification may be more substantive, and synthetic datasets with m=1 may still

provide high prognostic accuracy; also a primary criterion is generalizability which would be
evaluated differently
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Evaluating synthetic data privacy
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Privacy risk as membership disclosure

synthesis
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real
dataset
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POPULATION

El Emam, K, Mosquera L, Fang, X. Validating A
membership disclosure metric For synthetic health
data. JAMIA Open. 2022; in press.
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Privacy
(sequential synthesis w/ NO147 trial)

membership disclosure risk
0.004 0.006 0.008 0.010
| | | |

0.002
l

0.000
|

A maximum risk threshold is 0.2, and therefore any 12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
values below that are considered low risk. m Rephca

Analytics

AN AETION COMPANY

39 © Copyright 2019-2022 Replica Analytics Ltd.



To Learn More

- Join our mailing list:

- Follow us on Linkedin: https://bit.ly/2XS3KHF

- Listen to our comprehensive on-line tutorials on data synthesis:

- Review our detailed knowledgebase of technical articles on synthetic data generation

- Read our introductory report and book on the topic:
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https://bit.ly/3gRVAIi
https://bit.ly/2XS3KHF
https://bit.ly/2TXI0Jy

Thank youl!

kelemam@replica-analytics.com . Imosquera@replica-analytics.com
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