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Synthetic Data Uses

. Data Sharing and Data Access

- Al and data science projects

. Software testing

- Proof of concept and technology evaluations

- Open data/open science

- Hackathons and data competitions/challenges

Data Amplification and Data Augmentation

- Amplifying small datasets

. Correct bias
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The Synthesis Process

Source Data
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Data Simulator

Roal Data Cohort Bulldor lI

Simulator
Marketplace
Synthetic Data

Allows generation of synthetic data without direct

access to real data
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Simulator Exchange
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Two Synthesis Strategies

variables

Full Synthesis Partial Synthesis
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ldentifiability Spectrum
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Privacy Risks

Fully Synthetic Data Original Data

Washington Hospital 0.0197 0.098
Data
Canadian COVID Data 0.0086 0.034

A commonly used risk threshold = 0.09
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Privacy-Utility Tradeoff
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Mortality Over Time
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Mortality By Age
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Utility Framework

- An important concern of data
users Iis the data utility

. Utility has multiple dimensions to it

- Synthetic data may be optimized
on multiple utility dimensions
simultaneously to meet the needs
of multiple users, or on single
dimensions to address the needs
of limited users
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Seven Ways to Evaluate the Utility
of Synthetic Data

Khaled El Emam | Children’s Hospital of Eastern Ontario Research Institute

Access to individual-level health
data is going to be critical
for managing the COVID-19 pan-
demic and enabling society to return
to some form of (new) normal
functioning. Broader data access is
already starting to happen. At the
same time, there has been growing
alarm by the privacy community
about the extent and manner of the
level of data sharing that is going on
with such sensitive information. In
South Korea, broad data sharing has
already resulted in some patients
being reidentified and experiencing
judgment and ridicule,"? and some
governments have begun to reduce
the amount of information being
shared about COVID-19 cases.3-®
Data synthesis can provide a solu-
tion by enabling access to useful
information while ensuring reason-
able privacy protections.

There are already large-scale
data-sharing efforts using synthetic
data. For example, tabulations from
the 2020 United States Census will
be based on synthetic data. Public
Health England has made a large can-
cer registry publicly available for ana-
lysts (the Simulacrum). Additional
synthesis efforts are in the works
by the National Institutes of Health
(NIH) and NIH-funded projects.

Synthetic health data are gener-
ated from a model that is fit to a real
data set as illustrated in Figure 1.
Statistical machine leaming and
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Figure 1. The basic workflow for data synthesis.

deep learning methods are typically
used to fit this model. No specific
advance knowledge of how the data
will be used or analyzed is required
to generate useful synthetic data.
Once the model is fit, it is used to
generate new data from that model
The generation is stochastic; there-
fore, a different data set is generated
from the model each time.

For data scientists to be com-
fortable using synthetic data, espe-
cially to build models that would
influence public health and clinical
decisions, there needs to be evi-
dence demonstrating the utility of
that data. In this article, we summa-
rize the seven ways that the utility
of synthetic data has been assessed
thus far, and we close with some rec-
ommendations on their application.

Utility Assessment
Methods

The following are seven methods
for assessing the utility of synthetic

data. In these descriptions, we will
refer to the real data as the source
and the synthetic data as the gen-
erated data set. The assumption is
made that the objective is to make
individual-level patient data broadly
available, as opposed to, for exam-
ple, releasing aggregate statistics or
summary tables.

Utility assessment is performed
by the entity performing the data
synthesis before making the data
available more broadly. Typically,
the results of the utility assessments
are documented and shared with
the data users.

Replication of Studies

The default approach to assess util-
ity is to perform an analysis on the
real data and then replicate that on
the synthetic data. If the same con-
clusions are drawn from the two dif-
ferent analyses, then the synthetic
data are deemed to have high utility.
The analysis that is chosen must be
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Risk-based Approach

Data

Transformations
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Risk-based Approach

Data

Transformations

« (Generalization
e Suppressior
« Addition of noise

* Microaggregation
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Risk-based Approach

Data

Transformations

« Security controls
* Privacy controls
» (Contractual controls
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The Erosion of Trust

Che New YPork Times

guardian

'Anonymised’ data can never be totally

¢ : ’?
Your Data Were ‘Anonymized’? These anonymous, says study

Scientists Can Still Identify You
Findings say it is impossible for researchers to fully protect real

Computer scientists have developed an algorithm that can identities in datasets
pick out almost any American in databases supposedly

stripped of personal information.

You're very easy to track
o down, even when your
Twelve Million Phones, data has been

One Dataset, Zero Privacy anonymized

By Stuart A. Thompson and Charlle Warzel A new study shows you can be easily re-identified from almost any
ORI database, even when your personal details have been stripped out.

Opinion

by Charlotte Jee Jul 23,2019

ACM TECHNEWS

'Anonymized’' Data Can Never Be Totally Anonymous, says
Study

By The Guardian m

Online Profiling and Invasion of Privacy: The
Myth of Anonymization

-

)2/20/2013 12:23 pm ET | Updated Apr 22, 20
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Skill Set

The skills needed to create
de-personalized datasets
are very specialized, take
time to develop, and
generally difficult to find
cost-effectively

This limits the abillity to scale
Synthesis requires minimal
skills in practice — it is a
computationally intensive
process
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Regulatory Questions

- |Is synthetic data considered non-identifiable

iInformation ?

- Does the act of converting identifiable information into

non-identifiable synthetic information require

additional consent or authorization ?

. Can a data custodian outsource the creation of

synthetic data 7

. Can synthetic data be used for any purpose ?
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Sequential Synthesis
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Variational Auto Encoder (VAE)
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Generative Adversarial Network (GAN)

Propensity Score
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