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Agenda

Context
Research Lifecycle

Data Synthesis

Demonstration
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The demand for more robust data
sharing mechanisms and technology

Overview of a typical research
lifecycle

An overview of data synthesis methods

A live demonstration of integration of
data synthesis within a data sharing
platform
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What's so hard about data sharing?
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The need for proportionality
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Benefits of Data Sharing
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High Investment in AIML .. But

2704 Low Al investment/high returns High Al investment/high returns
20% . . ®
Industrial products and services & Technology/media and
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E @ Professional services
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F  14%
Government/public sector
(including education) @ Life sciences and health care
12%
- Low Al investment/low returns High Al investment/low returns
L
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Deloitte 2018
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High Investment in AIML .. But

Top challenges for Al initiatives: Ranked 1-3, where 1 is greatest challenge

Ranked 1 Ranked 2 Ranked 3 Ranked top three

=
=

Implementation challenges 13% 14% 12%

-
Lad
L3

Integrating Al into the company's i
roles and functions 14% 13% 12%

Data issues (e.g., data privacy, 4 0
accessing and integrating data) 16% 13% 10%

Cost of Al technologies/

fsd

LN =
3

solution development 13% 12% 1% 30%
Lack of skills 11% 10% 10% 3 1%
Challenges in measuring and 10% 119, g0y, 2 0%

proving business value

Deloitte 2018
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Biggest Constraints

Business Data quantity, Shortage of
OF process quality or internal data
challenges availability scientists or Al

developers

of using Al
insights

42%
Difficult High cost of Lack of senior
to build a technology management
business case understanding 12%

of Al

29%

Source: MIT Technology Review Insighs 3.
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https://snd.gu.se/sites/default/files/inline-images/fair.jp
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FINDABLE ACCESSIBLE
Making data discoverable, identifiable and Available and retrievable data with access
searchable via the assignment of metadata via authentication and authorisation
and unique identifiers. procedures.
. !
INTEROPERABLE REUSABLE
Parseable and semantically understandable Accurately described data with associated
data allowing the broadest possible data provenance and well documented, easily
exchange. shared usage rights.
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Research Lifecycle

Workspaces Services FAIR Data Services

Discover
Find and browse
datasets

Publish
Airlock

Research
Lifecycle

Access
Request and gain
access to datasets

Visualise
apps and reports

Select
Query and filter data

Analyse
Workspace Tools

Audit Secure data Infrastructure
management
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Synthetic data on demand

FAIR Data Services Workspaces
I i i | i
Gateway 1 Gateway 2 Gateway 3 Gateway 4
Accredited fo select Request for data Inbound Airlock Outbound Airlock
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Data discovery Selection & filtering Authorisation Synthetic Data Analysis Airlock
Open Accredited User Data Steward Automated Accredited User P.l. or Authorised
Policy driven Approver

Audit and Governance Reporting

. Replica
hia DRE Analytics

(c) Copyright 2019-2021 Replica Analytics Ltd. and Aridhia




12

The Synthesis Process

Source Data

Apply Model
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Synthetic Data

COU1A AGECAT AGELE70 WHITE MALE  BMI
United States 2 1 1 1 33.75155
United States 2 1 1 0 39.24707
United States 1 1 1 0 26.5625
United States 4 1 1 1 40.58273
United States 5 0 0 1 24.42046
United States 5 0 1 0 19.07124
United States 3 1 1 1 26.04938
United States 4 1 1 1 25.46939
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Synthetic Data Uses

. Data Sharing and Data Access

- Al and data science projects

. Software testing

- Proof of concept and technology evaluations

- Open data/open science

- Hackathons and data competitions/challenges

. Data Amplification and Data Augmentation

- Amplifying small datasets

. Correct bias
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Privacy Risks

Fully Synthetic Data Original Data

Washington Hospital 0.0197
Data
Canadian COVID Data 0.0086

A commonly used risk threshold = 0.09

0.098

0.034

Lo

R

Replica
Analytics



Live Demonstration
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Thank you

. For more information about Replica Analytics:

www.replica-analytics.com

- For more information about Aridhia:

www.aridhia.com

. Please contact us for more information about the
iIntegrated DRE with synthetic data generation

capabilities
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http://www.replica-analytics.com/
https://www.aridhia.com/
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