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Introduction to Synthesis
Privacy & Utility

Regulatory Questions

Implementation Questions
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General description of what synthetic
data is and general use cases

An overview of the evidence on
privacy risks and utility of synthetic
data

Addressing some of the common
questions that are asked by
regulators

What are the next steps for
implementing data synthesis in an
organization
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expectations

The adoption of synthetic data has been accelerating

quite rapidly
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EXPECTATIONS
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Gartner predicts synthetic data will have a non-trivial
iImpact on privacy violations and sanctions
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Top 10 Strategic Predictions
for 2022 and Beyond
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The Synthesis Process

Source Data

Apply Model | | | | | | |
. COU1A AGECAT AGELE70 WHITE MALE BMI
Synthetlc Data United States 2 1 1 1 33.75155
United States 2 1 1 0 39.24707
Common Clarifications United States 1 1 1 0 26.5625
United Stat 4 1 1 1 40.58273
« The source datasets can be as small as 100 or 150 ATEEE States
: . : United 5tates 5 0 0 1 24.42046
patients. We have developed generative modeling _
. . United States 5 0 1 0 19.07124
techniques that will work for small datasets. United Stat ; X R BT
» The source datasets can be very large — then it becomes & Ed - '
a function of compute capacity that is available. Jnitec states 4 1 1 1| 2546939
» Itis not necessary to know how the synthetic data will be
analyzed to build the generative models. The generative
models capture many of the patterns in the source data. .
Replica
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Simulator Exchange
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Common use cases for synthetic

data generation

Privacy

= Software testing

= |nternal data reuse
(analytics)

External data sharing

Vendor assessment

Training / education

Data
Enhancement

Augmenting / amplifying

small datasets (e.g., rare
disease datasets)

Compensating for under-

represented groupsin a
dataset by simulating
additional patients
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Two Synthesis Strategies

Full Synthesis Partial Synthesis
Synthesize all Synthesize quasi-
variables identifiers
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Operating models for secondary
analysis using synthetic data

- Sharing synthetic data and conclusions are drawn from the

analysis of synthetic datasets

- Make synthetic data available for exploratory analysis and if

there are interesting results, make a request for the full
dataset (which may be a long and complicated process, but at

least there is confidence that there are interesting results)

. Perform the analysis on the synthetic data and then submit the

analysis code (R, SAS, Python, ...) to be executed on the real

dataset behind a firewall
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Additional risks that may be relevant depending

on the privacy enhancing technology that is
being used

- ldentity disclosure — generally low for synthetic data

. Attribution disclosure — needs to be evaluated for

synthetic data

- Membership disclosure — needs to be evaluated for

synthetic data
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ldentifiability Spectrum

Identifiability
Threshold
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Example of evaluating attribution
disclosure

Fully Synthetic Data Original Data

Washington Hospital 0.0197 0.098
Data
Canadian COVID-19 0.0086 0.034
Data

A commonly used risk threshold = 0.09
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Example of evaluating membership
disclosure

Dataset Dataset size

Trial #1 (NCT00041197): National Cancer Institute 773 -1.42
Trial #2 (NCT01124786): Clovis Oncology 367 -0.0137
Trial #3 (NCT00688740): Sanofi 746 -0.034
Trial #4 (NCT00113763): Amgen 370 -0.0137
Trial #5 (NCT00460265): Amgen 520 -0.0947
Trial #6 (NCT00119613): Amgen 479 -0.0322

Trial #7 (N0147) 1543 0.052
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Privacy-Utility Trade-off
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The distributions of real and

synthetic datasets look similar
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Comparing Real and Synthetic
Data: Mortality Over Time
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Comparing Real and Synthetic
Data: Mortality By Age
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There is rapid adoption and consequent interest in
learning more about synthetic data generation by
regulators

. CNIL allowing synthetic data generation as a form of
data anonymization

- Norwegian DPA suggesting synthetic data for
software testing

- EDPS organizing an IPEN event on synthetic data

.- Canadian OPC funding a project on regulating
synthetic data through contributions program
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Risk-based Approach

Data

Transformations

» (eneralization » Security controls
*  Suppression * Privacy controls
» Addition of noise * (Contractual controls

* Microaggregation
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The Erosion of Trust

Ehe New Pork Times guar dian
: 'Anonymised' data can never be totall
Your Data Were ‘Anonymized’? These anonyfnous, says study y

Scientists Can Still Identify You
Findings say it is impossible for researchers to fully protect real

Computer scientists have developed an algorithm that can identities in datasets
pick out almost any American in databases supposedly

stripped of personal information.

You’re very easy to track
N down, even when your
Twelve Million Phones, data has been

One Dataset, Zero Privacy anonymized

By Stuart A. Thompson and Charlie Warzel A new study shows you can be easily re-identified from almost any
JEC. 19,2019 database, even when your personal details have been stripped out.

Opinion

by Charlotte Jee Jul23,2019

ACM TECHNEWS

'Anonymized' Data Can Never Be Totally Anonymous, says
Study

By The Guardian m

Online Profiling and Invasion of Privacy: The
Myth of Anonymlzatlon

0272072013 12:23 pm ET | Updated Apr 22 o
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Skill Set

- Synthesis requires minimal

skills in practice — it is a
largely automated process

. On the other hand the skills
needed to create non
personal datasets using
other methods are very
specialized, take time to
develop, and generally
difficult to find cost-
effectively
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. Privacy Regulators
|dentifiability not the appropriate

measure of risk, with some exceptions
. Still new but indications are that this

can be treated differently than previous

approaches

. Data Scientists

.- Main concern is data utility — case
studies will address that concern

- Results thus far are promising
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Thank you

. Replica Analytics develops the Replica Synthesis

software — generator of privacy protective synthetic

health data and simulator exchange

.- For more information on our synthetic data solutions:

- Visit our website www.replica-analytics.com

- Message us via the website contact page
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http://www.replica-analytics.com/

Synthetic Data Generation
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