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Introductions;: Amanda Borens

« Welcome to the Second 2022 RDCA-DAP
webinar

« Place all guestions in the Q&A chat box, there
will be a Q&A session at the end of the
presentation

«  Within the Q&A box, please be sure
the questions are being sent to "All Panelists"
to ensure that they will be seen.

 This presentation is being recorded and will be
made available shortly after the presentation

Amanda Borens, MSc
Executive Director of Data
Science
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the FDA/HHS, totaling $13,239,950, and 45.8% funded by non-government source(s), totaling $11,196,634. The contents are those of the author(s) and do not
necessarily represent the official views of, nor an endorsement by, FDA/HHS or the U.S. Government.



Presenter: Lucy Mosquera (R

Lucy Mosquera has a background in biology and
mathematics, having done her studies at
Queen's University in Kingston and the
University of British Columbia. In the past she
has provided data management support to
clinical trials and observational studies at
Kingston General Hospital. She also worked on
clinical trial data sharing methods based on
homomorphic encryption and secret sharing
protocols with various companies.

At Replica Analytics, Lucy is responsible for
integrating her subject area expertise in health
data into innovative methods for synthetic data
Lucy Mosquera, generation and the assessment of that data, as
Director of Data Science well as overseeing our analytics program.
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Agenda

Introduction to Synthetic General descriptionof what synthetic
Data datais

Synthesis of Longitudinal An overview of strategies to
Data synthesize longitudinal health data

Applications in Rare Description of synthetic data use
Disease Data cases in rarediseases
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The Synthesis Process

S (source)

Source Data

., Jnew)

Apply Model

Additional Clarifications

» The source datasets can be as small as 100 or 150
patients. We have developed generative modeling
techniques that will work for small datasets.

» The source datasets can be very large — then it becomes
a function of compute capacity that is available.

+ Itis not necessary to know how the synthetic data will be
analyzed to build the generative models. The generative
models capture many of the patterns in the source data.
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Use Cases for Synthetic Data

Discover Artificial Intelligence

o Discover

Review

Synthetic data use: exploring use cases to optimise data utility

Stefanie James' - Chris Harbron? - Janice Branson® - Mimmi Sundler®

Software
testing

"WMachine

Learning
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Can be grouped as:
Privacy use cases
Analytic use cases

VenSor

assessment

Synthetic data
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A simulator exchange allows data to be made
available without sharing actual data

[ (new)

<>
Data Consumers

;pbly Model'

Synthetic Data
§ f (new )
=7
Apply Model
Synthetic Data
Addltlonal Clarifications
g I The simulators would not be given to the data consumers
— —they would only have access to them through an
r interface.
: S « This access would be monitored and throttled to reduce
Apply Model the risk of attacks on the models.
Syn thetic Data  Data consumers would also need to agree to terms of
use around the access to the simulators. .
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Training a generative model often uses a
discriminator

=

Real Data

‘ E) Synthetic Data 'ﬂg
Generator Discriminator

Evaluation Results
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Longitudinal Data Model
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Demographics|

Drugs

Age

Lab
Test name

Visits

Admissions

Labs

Claims

Sex
Time to last day of follow-up available

Comorbidity score (elixhauser)

Dispensed amount quantity
Relative dispensed time in days
Dispensed day supply quantity

Morphine use (binary)
Oxycodone use (binary)
Antidepressant use (binary)

Relative admission time in days
Problem code 1
Problem code 2

Resource intensity weights

Relative time admitted in days
LOS

bggn;)si; czgde 1

Diagnosis code 2
Resource intensity weight

Test result (integer)
Relative time in days lab taken

Primary diagnosis code
Provide specialty
Relative service event start date
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The complexity of longitudinal data requires a
different synthesis approach

e Features & Cohorts:

- Define features on the raw longitudinal data and then synthesize the tabular feature dataset

- Define a cohort on the raw longitudinal data and then synthesize the tabular cohort dataset

« Raw Longitudinal:
- Fully vs partially synthetic data

- For RWD we use a hybrid approach of sequential synthesis and recurrent neural
network architectures to synthesize these — full synthesis
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Two synthesis strategies for raw longitudinal data

Full Synthesis Partial Synthesis
Synthesize all Synthesize quasi-
variables identifiers
% %
& &
sensitive = sensitive =
) o ; ()]
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Privacy-Utility Trade-off
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One way to classify utility metrics is as broad and

narrow

Broad Metrics

These are generic metrics that
are easy to calculate when the
generative model is built and
synthetic data are synthesized.
They are only useful if they
are predictive of workload-
specific metrics.

Narrow Metrics

These are workload-specific and are
what is of most interest to the data
users. However, all the possible
workloads will not be known in
advance and therefore we have to
consider representative workloads
when developing and evaluating
utility metrics.
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Examples of Broad Metrics

Comparison of the number of events per patient

Number of certain types of events (e.g., prescriptions) per patient

Limit the above to a certain time interval

Comparison of the overall frequency of events

Comparisons of event distributions across classes of events using

univariate distribution comparison metrics

Evaluation of the k-order transition matrices among events or classes of

events
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Attribution Disclosure: Find a similar record in
the synthetic data and learn something new

Quasi-identifiers Sensitive variables

— ——

ﬂ Sex Yearof Birth NDC
[REE 1985 009-0031

‘ Male
h; Male 1988 0023-3670
! Q Male 1982 0074-5182
Female 1983 0078-0379
. R Female 1989 65862-403
) - Male 1981 55714-4446
Male 1982 55714-4402
Female 1987 55566-2110
o Male 1981 55289-324
Female 1986 54868-6348
Male 1980 53808-0540
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Attribution Risk Results
Published risk assessment

_ Population-to- Sample-to-
results for synthetic data sample risk population risk
ted : tial Washington State 0.00056 0.0197
generatea using sequentia Inpatient Database
: . Canadian COVID- 0.0043 0.0086
tree synthesis method: 19 cases

El Emam K, Mosquera L, Bass J. Evaluating Identity Disclosure Risk in Fully Synthetic Health Data: Model
Development and Validation. J Med Internet Res 2020;22(11):e23139, doi: 10.2196/23139.
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Membership disclosure: is the distance between S and D
predictive of which records are in the training dataset

original
dataset
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Analysis Specific Utility: .
Adjgls:tsed model of impact of bowel obstruction
on

Hazard Ratios: Analysis for Disease-Free Survival

Source * Real Synthetic Cl Overlap
T Stage: T4 vs T1-2 ; o 40%
T Stage: T3 vs T1-2 : o 42%
Sex: Male vs Female -:..- 57%
Positive LNs (>=4) . — 81%
Obstruction : —— 86%
Histology (High) :-.— 90%
ECOG: 1-2vs 0 -:.- 89%
BMI: 25-30 vs <25 -:.— 89%
BMI: >30 vs <25 : —— 91%
Age: 40-69 vs <40 -.—: 99%
Age: >=70 vs <40 -.—i 88%

0 2 4 6 8
Hazard Ratio .
. . o . @ Replica
Azizi Z, Zheng C, Mosquera L GOING-FWD Collaborators, et al. Can synthetic data be a proxy for real clinical trial data? A validation study BMJ Analytics

Open 2021;11:e043497. doi: 10.1136/bmjopen-2020-043497
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Analysis Specific Utility Results:
Adjusted Cox regression

Note: Adjusted estimates
include the following co-
variates: age, sex,
antidepressant use,
Elixhauser score, ALT,
eGFR, HCT; Opioid 1 served
as the reference group
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Broad Utility Results

Synthetic Data

Real Data
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Rare Diseases

Data synthesis can be used to meet two needs for rare disease data:
 Mitigating privacy risks to facilitate data sharing in difficult to anonymize

small datasets; supporting open data initiatives

« Amplifying and augmenting existing small datasets

Replica
Analytics
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Privacy Risks in Rare Disease Data

- Rare disease datasets can be difficult to anonymize due to small sample

sizes, heterogeneity among patients

- Synthesis mitigates privacy risks without compromising data utility

to the samedegree

Replica
Analytics
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Data Augmentation vs Data Amplification:
Two different approaches for getting more data

(@) Augmentation (b) Amplification
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Analytics
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Virtual Patients

0 Treatment Control
® ® o
Virtual patients can be simulated . % % R
O?O F_?@
to reduce recruitment or to rescue e %
studies with low recruitment or ®
h| h attr|t| On 9 Treatment Control
° ®@ @
¢ ¢
® ® @
® ®
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Virtual Patients

Real-world data can be amplified
to create synthetic external
controls, especially when there

are insufficient RWD or RWD

diversity
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Valid Inferences on Synthetic Data

Analyses conducted on synthetic data can produce valid statistical

inferences by using multiple imputation framework

Result:
Result: 1.22 Combin
) ombining _
1.22 1.16 Rules Result: 1.23
1.28
1.24

(a) Single analysis of (b) Multiple imputation analysis
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Question and Answer panel
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Jeff Barrett, PhD,
FCP, Senior Vice President;
RDCA-DAP Lead

Amanda Borens, MSc
Executive Director of

Data Science

Khaled El Emmam, PhD
Co-Founder and GM

Lucy Mosquera
Director of Data Science
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To Learn More

Join our mailing list: https://bit.ly/3gRVAIi

- Follow us on Linkedin: https://bit.ly/2XS3KHF
- Listen to our comprehensive on-line tutorials ondata synthesis:

ttps://bit.ly/2TXI0Jy

- Read our introductory report and book on the topic
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& RDCA-DAP"
Rare Disease Cures Accelerator
Data and Analytics Platform

Thank You!
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